Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

Identifieur interne : 001831 ( Main/Exploration ); précédent : 001830; suivant : 001832

Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

Auteurs : Erik Budsberg [États-Unis] ; Jordan T. Crawford [États-Unis] ; Hannah Morgan [États-Unis] ; Wei Shan Chin [États-Unis] ; Renata Bura [États-Unis] ; Rick Gustafson [États-Unis]

Source :

RBID : pubmed:27525039

Abstract

BACKGROUND

Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands.

RESULTS

Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands.

CONCLUSION

Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.


DOI: 10.1186/s13068-016-0582-2
PubMed: 27525039
PubMed Central: PMC4982110


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.</title>
<author>
<name sortKey="Budsberg, Erik" sort="Budsberg, Erik" uniqKey="Budsberg E" first="Erik" last="Budsberg">Erik Budsberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Crawford, Jordan T" sort="Crawford, Jordan T" uniqKey="Crawford J" first="Jordan T" last="Crawford">Jordan T. Crawford</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Morgan, Hannah" sort="Morgan, Hannah" uniqKey="Morgan H" first="Hannah" last="Morgan">Hannah Morgan</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chin, Wei Shan" sort="Chin, Wei Shan" uniqKey="Chin W" first="Wei Shan" last="Chin">Wei Shan Chin</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gustafson, Rick" sort="Gustafson, Rick" uniqKey="Gustafson R" first="Rick" last="Gustafson">Rick Gustafson</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27525039</idno>
<idno type="pmid">27525039</idno>
<idno type="doi">10.1186/s13068-016-0582-2</idno>
<idno type="pmc">PMC4982110</idno>
<idno type="wicri:Area/Main/Corpus">001665</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001665</idno>
<idno type="wicri:Area/Main/Curation">001665</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001665</idno>
<idno type="wicri:Area/Main/Exploration">001665</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.</title>
<author>
<name sortKey="Budsberg, Erik" sort="Budsberg, Erik" uniqKey="Budsberg E" first="Erik" last="Budsberg">Erik Budsberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Crawford, Jordan T" sort="Crawford, Jordan T" uniqKey="Crawford J" first="Jordan T" last="Crawford">Jordan T. Crawford</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Morgan, Hannah" sort="Morgan, Hannah" uniqKey="Morgan H" first="Hannah" last="Morgan">Hannah Morgan</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chin, Wei Shan" sort="Chin, Wei Shan" uniqKey="Chin W" first="Wei Shan" last="Chin">Wei Shan Chin</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gustafson, Rick" sort="Gustafson, Rick" uniqKey="Gustafson R" first="Rick" last="Gustafson">Rick Gustafson</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27525039</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.</ArticleTitle>
<Pagination>
<MedlinePgn>170</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13068-016-0582-2</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Budsberg</LastName>
<ForeName>Erik</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Crawford</LastName>
<ForeName>Jordan T</ForeName>
<Initials>JT</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morgan</LastName>
<ForeName>Hannah</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chin</LastName>
<ForeName>Wei Shan</ForeName>
<Initials>WS</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bura</LastName>
<ForeName>Renata</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gustafson</LastName>
<ForeName>Rick</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>08</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Acetogen</Keyword>
<Keyword MajorTopicYN="N">Bio-jet fuel</Keyword>
<Keyword MajorTopicYN="N">Bioconversion</Keyword>
<Keyword MajorTopicYN="N">Biofuel</Keyword>
<Keyword MajorTopicYN="N">Biorefinery</Keyword>
<Keyword MajorTopicYN="N">Life cycle assessment</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>07</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27525039</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-016-0582-2</ArticleId>
<ArticleId IdType="pii">582</ArticleId>
<ArticleId IdType="pmc">PMC4982110</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol Prog. 1999 Oct 1;15(5):804-816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2005 Spring;121-124:1101-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15930584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11206-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16837571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2011 Jan 1;45(1):334-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21142000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2011 Nov 1;45(21):9133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21958200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2012 Jun 7;9(71):1105-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22467143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Dec;150:447-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23978607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2016 Jun;43(6):807-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26992903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2016 Jun 23;9:141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28616077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1973 May;114(2):743-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4706193</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Budsberg, Erik" sort="Budsberg, Erik" uniqKey="Budsberg E" first="Erik" last="Budsberg">Erik Budsberg</name>
</region>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
<name sortKey="Chin, Wei Shan" sort="Chin, Wei Shan" uniqKey="Chin W" first="Wei Shan" last="Chin">Wei Shan Chin</name>
<name sortKey="Crawford, Jordan T" sort="Crawford, Jordan T" uniqKey="Crawford J" first="Jordan T" last="Crawford">Jordan T. Crawford</name>
<name sortKey="Gustafson, Rick" sort="Gustafson, Rick" uniqKey="Gustafson R" first="Rick" last="Gustafson">Rick Gustafson</name>
<name sortKey="Morgan, Hannah" sort="Morgan, Hannah" uniqKey="Morgan H" first="Hannah" last="Morgan">Hannah Morgan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001831 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001831 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27525039
   |texte=   Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27525039" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020